Transient Coarsening Behaviour in the Cahn-hilliard Model

نویسندگان

  • HARALD GARCKE
  • BARBARA NIETHAMMER
  • MARTIN RUMPF
  • ULRICH WEIKARD
چکیده

ABSTRACT. We study two–dimensional coarsening by simulations for the Cahn–Hilliard model. A scale invariance of the sharp interface limit of this model suggests that the characteristic length scale grows proportional to , respectively the energy density decreases as . We compare the coarsening dynamics for different choices of data for different volume fractions. We observe that, depending on the specific data, the coarsening process can over a large time window be much slower than expected by dimensional analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method.

An efficient semi-implicit Fourier spectral method is implemented to solve the Cahn-Hilliard equation with a variable mobility. The method is orders of magnitude more efficient than the conventional forward Euler finite-difference method, thus allowing us to simulate large systems for longer times. We studied the coarsening kinetics of interconnected two-phase mixtures using a Cahn-Hilliard equ...

متن کامل

The Dynamics and Coarsening of Interfaces for the ViscousCahn - Hilliard Equation in One Spatial

In one spatial dimension, the metastable dynamics and coarsening process of an n-layer pattern of internal layers is studied for the Cahn-Hilliard equation, the viscous Cahn-Hilliard equation, and the constrained Allen-Cahn equation. These models from the continuum theory of phase transitions provide a caricature of the physical process of the phase separation of a binary alloy. A homotopy para...

متن کامل

A generalization of Cahn-Hilliard inpainting for grayvalue images

The Cahn-Hilliard equation has its origin in material sciences and serves as a model for phase separation and phase coarsening in binary alloys. A new approach in the class of fourth order inpainting algorithms is inpainting of binary images using the Cahn-Hilliard equation. We will present a generalization of this fourth order approach for grayvalue images. This is realized by using subgradien...

متن کامل

Analysis and Approximation of a Fractional Cahn-Hilliard Equation

We derive a Fractional Cahn-Hilliard Equation (FCHE) by considering a gradient flow in the negative order Sobolev space H−α, α ∈ [0, 1] where the choice α = 1 corresponds to the classical Cahn-Hilliard equation whilst the choice α = 0 recovers the Allen-Cahn equation. The existence of a unique solution is established and it is shown that the equation preserves mass for all positive values of fr...

متن کامل

Cascades of Spinodal Decompositions in the Ternary Cahn-hilliard Equations

The dynamics of the Cahn-Hilliard equations for a ternary alloy are studied during the phase separation process. The results show a primary spinodal decomposition followed by coarsening and then possibly a secondary spinodal decomposition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003